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J. Phys. A Math. Gen. 28 (1995) 5361-5374. printed in the UK 

Symmetry reductions of partial differential equations 
related to singular manifold expansions 
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Bombay 400019, India 

Received 7 December 1994, in final form 12 May 1995 

Abstract. It is shown ulat all the information yielded by the reduction mekods of Bluman 
and Cole and Clarkson and KrusM can be obtained using the singular manifold expansion. The 
Burgers' equation, modified Korteweg-de Vries equation, Caudrey-Dodd-Gibbon equation and 
the PitzhugLNagumo equation are used as illustrative examples. Several new exact solutions 
are presented. 

1. Introduction 

Recently, there has been considerable interest in symmetry reductions of partial differential 
equations (PDES), mainly because the procedure reduces the number of independent variables, 
and, therefore, assists in the determination of exact solutions. The classical method [ I 4 1  for 
this purpose is to use the symmetry properties of the PDE: any group of point symmetries 
admitted by the equation defines a symmetry reduction. This method has been used to 
study Burgers' equation by Tajiri ef al [SI, the modified Korteweg4e Vries equation by 
Lakshmanan and Kaliappan [6] and the Fitzhugh-Nagumo equation by Nucci and Clarkson 
VI. 

A generalization of the above method called the 'non-classical method' was proposed 
by Bluman and Cole [8]. The family of solutions is now larger than that obtained with the 
classical method. This technique has been further generalized by OIver and Rosenau [91. 

A direct method which does not use group analysis techniques for determining the 
symmetry reductions of a given PDE 

Lu=O (1.1) 
for a function of two variables u(x, t )  (where L is a differential operator) bas been developed 
by Clarkson and Kruskal [IO]. In particular, they obtained solutions in the form 

u ( x , t )  = A ( x , t ) F ( z ) +  B ( x , t )  (1.2) 

with A(x, t ) ,  F(z)  and B ( x ,  t )  as functions of their arguments, and z as a similarity variable. 
Their reduction procedure suggested that 

(1.3) 

with 0 and U as arbitrary functions of t .  Their method proved effective in framing new 
symmetry solutions to a variety of PDEs. Later, Levi and Winter& Ill] and Pucci and 
Succomandi [12] recognized that solutions derived by the direct method of Clarkson and 
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Z ( X ,  t )  = e(t)x + oo) 
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Kruskal are always invariant solutions under non-classical symmetries admitted by the 
equation. However, PDES may admit symmetry reductions with non-classical symmetries, 
yet they are not recoverable by the direct method [7,13]. A consistency criterion has been 
formulated by Anigo et nl [14] which, if satisfied, ensures that the methods of Bluman and 
Cole and Clarkson and IGuskal yield the same results. 

The singular manifold method [15,161 has so far been used to obtain travelling-wave- 
type non-classical solutions [17-191. The solution of PDE (1.1) iS now assumed to be in the 
series form 

and the expansion function z is specified in such a way that the consistency conditions 
are satislied on the singular manifold itself. This, in tum, corresponds to the truncation 
of series and contains certain symmetry information. However, if z plays the role of a 
similarity variable, the infinite series solution (1.4) may yield a more general travelling- 
wave-type non-classical symmetry solution. The expansions truncated at the constant level 
term have also been employed to conshuct the Backlund transformation and Lax pairs for 
various PDES (see [20-23]). 

In this paper we use the singular manifold expansion (1.4) to discuss the symmetry 
reductions of Burgers’ equation, the modified Korteweg-de Vries equation, the Caudrey- 
Dodd-Gibbon equation and the Fitzhugh-Nagumo equation. Specilically, we show how 
these expansions can be systematically used to recover all those symmetry solutions which 
could be obtained through the direct method of Clarkson and Kruskal; the truncated 
expansion renders the solutions found by using Bluman and Cole’s non-classical approach. 
In fact, this method opens up many new possibilities in a natural way. 

2. Symmetry reductions of Burgers’ equation 

In this section we seek reductions of the Burgers’ equation 

ut + uuz + uxx = 0 (2.1) 

with the help of series (1.4). When this series solution is substituted into (2.1), the leading 
order analysis shows that 

U0 = 2zx (2.2) 

and 01 = -1. Here, we may note that if uo is a function o f f  alone, z in (2.2) can be 
defined as in (1.3). If z is an arbitrary expansion function defining the singularity manifold 
by z = 0, the infinite expansion can be truncated, provided z satisfies a nonlinear PDE, as 
we shall see later. Thus, there are two freedoms in the determination of z.  

Case 1. zrx = 0. We introduce z as defined in (1.3) and t as the new independent 
variables in (2.1) to get 

U? + u,(Rz + S + 0u) + 0 2 ~ ,  = 0 (2.3) 
where 

with 0 and U as arbitrary functions o f t .  We may now re-write the series solution (1.4) as 

u(z ,  t) = A(z, t)F(z) + B(z,  t) (2.5) 
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where 

A(z,t) = A o + A l z + A 2 ~ ~ + . . .  (2.6) 
B(z, t )  = Bo + BIZ + BZZ' +.. . (2.7) 

(2.8) 

and 

F(z) = z-'(Fo + FIZ + FZZ' + . . ,) 
with Ak, 4, k >, 0, as arb i t tq  functions of t ,  and F k  as arbitrary constants. In writing 
these expansions, A and B are assumed to have fixed singularities in the z-plane. The 
movable pole z = 0 does not result from these functions. 

We substitute (2.5) with (2.6H2.8) into (2.3) and equate the coefficients of different 
powers of z to zero. This leads to 
z - ~  : 2AoF08' - 8AiF; = 0 (2.9) 

(2.10) 

(2.11) 

z-' : -AoFo(S + tJ(AoF1 + A1 Fo +Bo)) =-O 
dAo 
dt 

z-':-RAoFoC-Fo=O 

2 ' :  ( A o F z + A 1 F 1 + A 2 F o f  BI ) (S+B(A~FI+AIF~+BO))  
+(AOF3+AlFz+AzF1 +AsFo+  B~)(8AoFo+28~) 

+-Fo+ -FI + - = 0. dA1 dAo dB0 
(2.12) dt dt dt 

Equations (2.9)-(2.12) yield 
Ao = 8 (2.13) 

(2.14) 

Bo = -(AI Fo + C18 + S/8)  (2.15) 

Fo = 2 C1 = F1 C2 = (~FZ)-' C, = F3/F2. (2.16) 

L I ( z , Z )  =(Q+Aiz)F(z) - ( A ~ F ~ + C ~ ~ + ~ / B ) + B I Z + B ~ Z ~  (2.17) 
where B1 and Bz are arbitrary functions of t ,  and A1 is given by (2.14). Substitution of 
(2.17) into (2.3) gives 

where 

The solution (2.5) may now be read as 

d F  [83F+282A1~F-  CIB3+[(R+ B18)B - A ~ ( 2 A 1 6 ' + ~ 1 8 * ) 1 ~ 1 ~  

dF +[BATz2F + [@Bz + AI(R + B18)1z2 + 8 A 1 B z z 3 1 ~  

+82A1F2+8A:~F2+ -A1(2A18 + ~ 1 8 ~ )  + B18'+ II dt 

A I ( R + B ~ ~ ) + ~ A I B I + ~ ~ ~ B ~ + -  Z F - B ~ ( ~ A ~ ~ + C I O ~ )  dA'l dt 

dt 
dBo 
dt 

+--+ 2B28' + B1(R + B18) - 2B2(2A18 + C18') + 
d2F + [2Bz(R + 818) + 8B1 BZ + dt zz + 28B;z3 + 8'(8 + A1z)- dz2 = 0. 

(2.18) 
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It can be readily noted that if (2.18) is to become an ordinary differential equation for F(z),  
we must have 

d0 
A~ = c4e B~ = c,e - -e-2 B~ = c6e. (2.19) dt 

Since the contribution of those terms which are proportional to 0 is insignificant, we can 
set 

c1 = o  cz=o c4=0 cg=o and c6 = 0. 

Further, if 0 and U are the solutions of the following ordinary differential equations: 

6 

dzo d0du 5 0- - 2-- = (C3 - C,U)0 
dt2 dt dt 

with C3 and C7 as an arbitrary constant, the solution (2.17) may be re-written as 

Here, F satisfies 
d2F dF - + F- + C7z - C3 = 0. 
dz2 dz 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

This symmetry reduction has been obtained by Clarkson and Kruskal using their direct 
method. Equation (2.23) can be integrated once to give 

where C8 is the constant of integration. Setting F = Z(d@/dz)@-' in (2.24) yields 

(2.25) 

This equation has many solutions for C3 = 0 in addition to the special case when C3 # 0. 
If we set C3 = 0, C7 = -1, C8 = -(ZV + 1) and y = 2-'/'z, (2.25) takes the form 

(2.26) 

which is the parabolic cylinder equation with linearly independent solutions D,(y) and 
D,(-y); U is a parameter. In the special case when U = n is a positive integer, we have 

M Y )  = H e h 9 e x p [ - ~ ~ / 2 1  (2.27) 

where He.(y) is the Hermite polynomial given by 

(2.28) 

If C3 = 2, C, = 0 and Cs = 0, (2.25) becomes an Airy equation and its general solution 

d" 
Hen(y) = (-V expt~~l-[exp(-y*)1. 

dy" 

can be wiitten as 

@ bl(-Z)'/Z1~/3(2(-Z)3/2/3) 4- bz(-2)"2K~/3(2(-Z)3'2/3) (2.29) 

where 11/3(2(-2)~/'/3) and K1/3(2(-~)~/~/3) are modified Bessel functions of first and 
second kind of order 113, respectively. 
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If C3 = 0, C, = 0 and Cg # 0, the general solution of (2.25) is given by 

= b1 e~p[(C8/2)'/~zl C bz exp[-(C~/2)'/~zl. (2.30) 

'In the next part of this section we shall see that (2.24) has many exact solutions if 

Case 2. zxx # 0. We now seek the symmetry reductions of Burgers' equation (2.1) by 

Here, bl and bz are arbitrary constints. 

C3 0 and C, = -1/4. 

using the truncated expansion 

U ( X .  t )  = - U o ( X , f )  + U l ( X , t )  
Z 

(2.31) 

with UO, u1 and z as arbitrary functions. When this solution is substituted into the PDE and 
the coefficients of different powers of z are set equal to zero, we obtain 

z-3.  . -uozx 2 + 2uoz: = 0 (2.32) 
z-z : -uoz* + uouox - u0u1z, - 2uoxz, - uoz,, = 0 (2.33) 
z-l . . U0f + U0UlX + U1UOX + umx = 0 
0. z . u1* + U l U l X  + UIZX = 0. 

(2.34) 
(2.35) 

We have observed that if the term u2z is present in the solution (2.31), both qX and zx 
must be functions of t only. This implies that z is in the form (1:3). 

For now equation (2.32) gives uo as in (2.2). On using this in (2.33), we get 

Zr + U1Zr + z,, = 0. (2.36) 
Here, equation (2.34) is satisfid. If u1 is an arbitrary constant; say c,, (2.35) is also exactly 
satisfied. We now consider the following cases: 

(I) If C, = 0, we have the solution 

U = 2zr f z  

Z, + zrx = 0. 

where z satisfies the heat equation 

(2.37) 

(2.38) 
Thus, we have recovered the well known result that the Cole-Hopf transformation maps 
the Burgers' equation into the linear heat equation (see also [15]). 

We summarize the solutions of type (2.37) as follows. 
(a) PDE (2.38) has a solution of the form 

(2.39) 

with bi, i 1 as arbitrary constants to be determined, and II as an arbitrary integer. 
If we set n = 2, the solution of (2.38) may be written as 

Z ( X .  t )  = bl + bzx + b3x2 + b4x3 + b5x4 + bsx5 - (2b3 + 6 b 4 ~  + l2b5x2 + 20b6X3)t 
+(12bS + 60b6X)tz. (2.40) 

For 61 = -a2, bz = 2ul. b3 = 1, 64 = 0, bs = 0, bs = 0, we obtain the solution 
(iii) of Pucci (or the solution (4.6) of Arrigo et nl [14]). This solution can be obtained 
by both the Bluman and Cole method and the direct method of Clarkson and Kruskal, 
for the consistency criterion of Arrigo et a1 is satisfied. Nevertheless, we have found 
that if the constants 61, bz, b3, b4, b5 and b6 in (2.40) are chosen such that the expression 
b ~ + b ~ x + b ~ ~ ~ + b ~ ~ ~ + b ~ x ~ + b , j ~ ~  is intheformal(x+q)p, p < 5, the solution (2.37) with 
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(2.40) is always recoverable by the direct method. For these solutions we have e(t)  = r1l2, 
u(t) = a0 in (1.3). and C3 = 0; C7 = -a ;  CE = -5/2, -7/2, -9/2, -11/2,. . . in (2.24). 
For bi = -2b, 62 = -k, = 0, b4 = -1, b5 = 0, b6 = 0, we have the solution in the 
form (4.27) of Arrigo et al . This solution cannot be obtained by the direct method. 

Setting bz = 0, b4 = 1, b5 = 0, b6 = 0, we obtain a new two-parameter family of 
solutions: 

4 b 3 ~  + 6 2  - 12t 
bi + b d  +x3  - (2b3 + 6 x ) t ’  

u(x, t) = (2.41) 

Setting bs = 1 ,  b6 = 0 and b1 # (b4/4)4, we obtain a new four-parameter family of 

(2.42) 

solutions: 

u(x ,  t )  = [2bz + 4b3x + 6b4x2 + 8x3 - (12b4 + 48x)t]/D1 

where 

DI = bi + bzx + b3x2 + b4x3 + x4 - (2b3 + 6b4x + 12x2)t + 12tZ. (2.43) 

Setting b6 = 1, bl # (b5/5)’, we obtain a new five-parameter family of solutions: 

u(x, t )  = [2bz + 4b3x + 6b4x2 + 8bsx3 + lox4 - (12b4 + 48b5x + 120x’)t + 120t2]/Dz 

(2.44) 
where 

Dz = bl + bzx + b3xz + b4x3 + b5x4 + x5 - (2b3 $- 6b4r + 12bs.z’ + 20x3)t 
+(12b5 + 60x)t’. (2.45) 

As a matter of fact, one can produce many new solutions by just fixing a different n in 
(2.39). 

@) Since the PDE (2.38) is linear, and 

z = b7 exp[bsx - bit] (2.46) 
is also its solution, the superposition principle holds. This gives a seven-parmeter family 
of solutions: 

U ( X ,  i) = [2bz + 4b3x + 6b4x2 + 8bsx3 + 10b6x4 - (12b4 + 48bsx + 120b6x2)t + lZOb6t2 
+2b7bs exp[bsx - bitlI/D3 (2.47) 

where 

D3 = bl + bzx + b3xZ + b4x3 + b5x4 + b6x5 - (263 + 6b4x + 12b5xZ + 20b6x3)t 
+(I265 + 60x)p + b7 exp[bsx - bgt]. 

h = exp[-czg2] and b8 = g, we obtain the solution (iiii) of Pucci. 

(2.48) 
For bi = -ci. bz = 1, bs = 0, b4 = 0, b 5 = 0, b6 = 0 in (2.47)-(2.48), and 

GI) If c, # 0, the solution of (2.1) is given by 

u(x. t )  = (22, + c*z)/z (2.49) 
where z is the solution of the PDE 

Zt + c*zx + zxx = 0. (2.50) 

We now have the following solutions of Burgers’ equation: 
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(c) The solution of (2.50) may now be assumed in the form 

(2.51) 

with bi, i > 1, as the arbitrary constants to be determined and n as an arbitrary integer. For 
n = ~ 3 ,  we have (2.51) as 

(2.52) 

Furthermore, since the solution 

z(x, t) = (b5 + bax) exp (2.53) 

also satisfies (2.50), the superposition principle holds, and we may obtain a seven-parameter 
family of solutions: 

+ c.62) x - b,x’} t 

3 

1 

+b7 exp[-c.xl . (2.54) 

For 61 = bz = b3 = b4 = 0, and bs = f l ,  bs = 0, c* = - f, b, = bzobs, bg = b i t ,  we 
obtain solution (4.21) of Pucci (or the form (4.18) of Arrigo et al). 

I-’ 
3. Symmetry reductions of the modified Korteweg-de Vries equation 

In~this section we use the Laurent series (1.4) to determine the symmetry solutions of 
modified Korteweg-de Vries equation .~ 

(3.1) 
Here, we have either a = -3, b = 2a2, or a = 1, b = 1, or a = -36/2, b = f(see 
[lo, 16,211); 6 is an arbitrary constant. For now a = - I ,  and 

U0 = Iozx (3.2) 

2 ut + au U, + bu,, = 0. 
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with IO = f(-6b/a)1/2. Again, we may either consider z in the form (1.3) or truncate the 
series (1.4) to obtain a more general functional form of z.  

Case 1. zxS = 0. Intmduction of z.as in (1.3) and t as independent variables in (3.1) 
leads to 

+ (RZ + s +aeu2)u, +be%,  = o (3.3) 
where R and S are defined as in (2.4), with 0 and U as arbitrary functions oft. When the 
solution of (3.3) is assumed to be in the series form (2.5), with A,  B and F as given by 
(2.6), (2.7) and (2.8), respectively, we get the following algebraic relations for Ax. Bk and 
Fw. k > 0: 

z - ~  : -(aeA;F,' + 6b@AFo) = 0 
r3 : - Z ~ O A ; F , ~ ( A , F ~  + A ~ F ~  + B ~ )  = o 
z - 2 .  . - A o F o ~ S f ~ 0 ~ ~ A o ~ i f A i F o + B 0 ~ ~ + 2 A o F o ( A o F z + A i F 1 + A x F o +  B i ) ) ]  = O  

(3.4) 
(3.5) 

(3.6) 
z - I  . dAo . FOZ - AoFoR - kBAoFo(AoF1 + A i  Fo + Bo)(AoFz + A i 4  + AzFo + B i )  = 0. 

(3.7) 

A o = 0  (3.8) 

Equation (3.4) gives 

and FO = IO, with 10 as in (3.2). Since &. k >/ 0, are constants, the functions A i ,  Ax, A3. 
BO, B1 and BZ must be proportional to~0. Henceforth we set A ~ + I  = 0, Bk = 0, k > 0. In 
addition, F1 = 0 and Fk = 0, k 2 3; FZ is an arbitrary constant. Equation (3.6) now yields 

s = c1e3 (3.9) 
where C1 = --aloFz. Thus, the symmetry reduction of (3.2) has the form 

u(z ,  t )  = 0( t )F(z ) .  (3.10) 

This substitution leads to 
d0 4 2 d F  d3F 
-F + ( (Re + S)0 + a0 F )- + be4- = 0. 
dt dz dz3 

In view of (3.9), it is obvious that if we choose 
d0 
dt 
- = c204 

F(z )  satisfies an ordinary differential equation: 
d F  d3F 
dz dz3 

C z F + ( C z ~ + C i  + a F Z ) - + b -  EO. 

Here, C ,  is an arbitrary constant. Equation (3.9) now becomes 
du  
dt 
-=  (ci + c2de3. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

The symmetry reduction (3.10) with F,  0 and U as the solutions of (3.13). (3.12) and (3.14), 
respectively, and z as in (1.3) has been earlier observed by Clarkson and Kruskal [lo] and 
Lakshmanan and Kaliappan [6]. 

Equation (3.13), on integration, gives the second Painlev6 equation: 
dzF 
dz* ( 9 + C z z ) F + a F 3 / 3 + b -  =C3, (3.15) 
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Here, C3 is a constant of integration. For C1 = 0, Cs = IoCZ, (3.15) has an exact solution 
F(z)  = Zo/z. 

Case 2. zxx # 0. We now consider the symmetry reductions of (3.1) by making use 
of the truncated expansion (2.31) with UO, ul and z as arbitmy functions of x and t .  We 
substitute this form into (3.1) and equate the coefficients of same powers of z to obtain the 
following equations: 

(3.16) 
(3.17) 

: -(auoz, 3 + 6buoz2) = 0 

z-2. 2 2 

p.. 2 

z - ~  : au&k - 2au&lz, + b(6u0,z: + ~UOZ,Z,~)  = 0 
. -ZYUO + 2auouiuox - auoulzx + auOulx + b(-3uozxzx - 3u0,z, - uozxXx) = 0 

. UO, +av,uo, + 2auoulu1, + buoxxx = 0 
(3.18) 

(3.19) 
(3.20) z 0 .  . UI: + aululx 2 + bulxxx = 0. 

Equation (3.16) yields the result (3.2), while (3.17) implies that 

(3.21) 

where Z1 = I&. Equations (3.18) may now be simplified to give 

(3.22) 2 2  z,zt + aIl z,, + bzxzxxr = 0. 

PDES (3.19) and (3.20) are exactly satisfied. 
Since the PDE (3.22) admits an exact solution 

Z(X, t )  = 12bc.d + C1 + (C;/3C3)X + C2X2 + C3X3 (3.23) 
we have a new two-parameter family of solutions of modified Korteweg-de Vries equation 
(3.1): 

- CiC2 - 12bC3(C2 + 3C3x)t 

(3.24) 

4. Symmetry reductions of Caudrey-Dodd-Gibbon equation 

In this section we use the expansion (1.4) about ths singular manifold to discuss the 
symmetry reductions of the Caudrey-Dodd-Gibbon equation [20] 

U: + uzxxxu + 30u,u,, + 30uuxxz + lSOu2ux = 0. (4.1) 
For now, we have a = -2, and 

(4.2) uo = -z2 ~~ 

U0 = -222 X I  (4.3) 

or 



5370 N Gupta 

As in the previous sections, we may consider either z in the form (1.3) or in a more general 
form obtained by assuming a finite series solution of (4.1). 

Care 1. zxx = 0. On using z as in (1.3) and f as independent variables in (4.1). we get 

ut + (RZ + S ) U ,  + esu,,,, + ~ o ~ ~ u , u , ,  + ~ O B ~ U U , ,  + i80eu2u, = o (4.4) 

where R and S are defined as in (2.4), with 8 and U as arbitrary functions of t .  We may now 
write the solution (1.4) in the form (2.5) with A and B as in (2.6) and (2.7), respectively, 
and F(z) as 

F ( z )  z-'(Fo+ Fiz + FZZ' + ... ). (4.5) 
Here, Ax and Bx, k > 0, are arbitrary functions of t ,  and Fx are arbitrary constants. When 
this soIution is substituted into (4.4) and the coefficients of Iike powers of z are equated, 
we get 

zT7 : -72085'A~F~ - 108W3AiFi - 36WAiF,3 = 0 (4.6) 
(4.7) 

z - ~  : 
z-' : (-1208' - lZO083A0Fo - 7208AiF:)(AoFl+ AiFo) = 0 

+ A ~ F ~ ) ~  - 72003AiF: 
-720BAoFo((AoFo(AoFz+A1F1+ AzFo+Bo)+(AoFi + A I F O ) ~ ) = O .  

(4.8) 
Equations (4.6)-(4.8) yield 

(4.9) 
(4.10) 
(4.11) 

where Fo is equal to either -1 or -Zi and F1 is an arbitrary constant. Since (4.10) and 
(4.11) imply that Ai, Az and BO must be proportional to 0', we set Ak+l = Ba = 0, k > 0. 
The solution may now be read as 

U(Z, t) = eZF(z) (4.12) 

with 8 as an unknown function off. This solution, when inserted into (4.4), gives 

d3F +30F-+l8OF 
dz3 

d8 d0 d F  
23-F +8-z- 

dt dt dz 
(4.13) 

It is now obvious that if we have 

(4.14) 

and 
s = cze 5 (4.15) 

equation (4.13) becomes an ordinary differential equation for F(z): 
d F  d5F d F d Z F  d3F d F  

5 dz d z 5  dz dz2 dz3 dz 
-5 (2. +z$) +CZ- +- +30-- +30F- + 180F'- =O. (4.16) 

If cz = 0, this equation has two exact solutions: F = -l/zz; F = -2/z2 
If c1 # 0, we have 

0 ( t )  = c3 U@) = czt + c4. (4.17) 
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Setting q = 1, c4 = 0, we obtain the symmetry reduction 

u(x. t )  = F(z )  z = x + Ct .  

If c1 # 0, (4.14) and (4.15) give 

O ( t )  = c;'/5(t + c3)-'/5 
U ( t )  = C4(t + C3)-'I5 + 5Cz/Cl 

(4.18) 

(4.19) 
(4.20) 

where c1, c2. c3 and c4 are arbitrary constants. Setting c1 = 1, c2 = 0, c3 = 0, ch = 0, we 
obtain the symmetry reduction 

u(x .  t )  =~f-Z/5F(z) z = xt- ' /5.  (4.21) 

Case 2. z,, # 0. We now seek the symmetry reductions of the Caudrey-Dodd-Gibbon 
equation (4.1) by using the truncated expansion 

(4.22) 

with U&, t ) ,  U I ( X ,  t )  and z ( x ,  t) as arbitrary functions. Substituting this truncated series 
solution into (4.1), we obtain uo as given by (4.2) or (4.3). In the former case, we have 

(4.23) U1 (x, t )  = zxx 

where z is a solution of the following two PDEs: 

(4.24) 2 
~ x ( ~ r  + 6~xzxz .z )  - 15ZxxZxxxx + ~OZ,, 7 0 

and 

Zxr + z x x u x x  = 0. (4.25) 
Since 

b? 2 2b: 5 Z ( X ,  t )  = bo +bit + bzx + -X + b3x3 + b4x4 + - X  
2b4 563~ 

(4.26) 

satisfies both (4.24) and (4.25). we obtain an exact four-parameter family of solutions: 

28 2bi bob:) ( 4bzb: ) 
b4 b3 63 5 

bob: 
b4 

U ( X ,  t) = -[bi - - + (F - 6bob3 

-t - - 8- x3+ -- + 4b: x4+-(b3b4x5 + bix6) 

16b: , 4bj 
5b3 5b: 

+-X + --x - bit + 6 b 3 ~  + 12b4x2 + 
+ bit + b 2 ~  + -X b: 2 +b3x3 + b4x4 + 

a 4  
(4.27) 

5. Similarity reductions of the Fitzhugl-Nagumo equation 

In this section we determine the symmetry reductions of the Fitzhugh-Nagumo equation 

using the series (1.4); OL = -1, and 

where c, = &A. We now consider the following cases. 

u t - u , , + a u - ( a + 1 ) u 2 + u 3 = ~  (5.1) 

U0 = c,zx (5.2) 
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Cuse I .  zzx = 0. With z as in (1.3) and t as new independent variables, equation (5.1) 
. I ~  . , becomes . 

+ (Rz  + S)U,  -@'U, + U U  - (U + l )u2+ u3 = 0 (5.3) 
where R and S are defined as in (2.4). Substituting the solution (2.5) with (2.6)-(2.8) into 
(5.3) and equating the coefficients of different powers of z to zero, we get 

(5.4) 
(5.5) 

A0 = 8 Fo = C, (5.6) 

zU3 : -2~?~AoFo + AiF: -0 
-2 . z . AoFo[-S+ AoFoI3(AoFi + AlFo + Bo) - (U + l ) ] ]  = 0. 

These equations give 

and 
1 s  
3 c*8 BO = - (- + a  + 1) -OF1 - A,Fo (5.7) 

where FI is an arbitrary constant. Here, we may assume that Ax = Bk+l = 0, k 2 1. The 
solution may now be read as 

(5.8) U(X, t )  = ~ F ( z )  + Bo + Biz. 
On using this in (5.3), we have 

[$ + (a - 2(a + 1)Bo + 3B:)e + B,S+aBo - (U + 1)E: + B: 

d F  
+ 8 ( R Z + S ) z + ( 3 B o - ( U +  1 ) ) ( z Z B ~ + 6 ' 2 F 2 + 2 ~ 8 B i F ] + B ~ ~ 3  

- 0 3 3  +03F3 +38zZB:F + 3 ~ 8 ~ B i F ~  
d2F 

+ ( R  + U  - 2 ( ~  + 1)Eo + 3B;)Bl (5.9) 

It now easily follows that if (5.9) is to become an ordinary differential equation for F(z) ,  
we mast have BI proportional to 8,  and 8 must be a constant. Setting 

Bl = O  (5.10) a + l  Bo = 7 
3 

8 = 1  u = q t  

FI = -CI j 3 ~ .  
(5.11) 
(5.12) 

we obtain the travelling wave solution 171. 

coefficients of different powers of z to zero, uo is as given by (5.2). and 
Z-' : -SUO - (U i- 1)U: + 3U:I41 + 3UoZxx = 0 
z-l : UOf + (a - R - 2(u + 1 ) U l  + 3(uf + UOU2))UO - UOXX = 0 
2' : U I ~  + (S - 2 ( ~  + I ) U O  + ~ U O U ~ ) U ~  + U U I  - (U + 1 ) ~ f  + U: + 3 4 ~ 3  

Case 2. zxx # 0. When we substitute the solution (1.4) into (5.1) and equate the 

(5.13) 
(5.14) 

-uIxx + uzlzx + u2zu = 0. (5.15) 
(a) To consider a truncated series solution of type (2.31). we set uk = 0, k > 2. This 

yields 

(5.16) 
(5.17) 
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and 

U I I  - U I X X  +au1 - (a + l ) U ?  + U; = 0. (5.18) 

If U I  is assumed to be a constant, the solutions of (5.18) are u1 = 0, 1, a. With U I  = 0, we 
have 

z = cl + czexp[{c,x + (1 - ~ a ) t ] / ~ ]  + cg exp[(ac,x+ (az - 2n) t ) /2]  (5.19) 

as the solution of (5.16) and (5.17). For positive and negative values of c,, the solutions 
were found~eadier by Estevez [19]. 

With U, = 1 and ut = a, we obtain the following new solutions: 

and 

(5.21) 
czexp[(c,(l - a)x + (1 - a2)t]/2] + cla 

CI + cZexp({c,(l - a)x + (1 - aZ)t}/z) + ci exp((-c*an + (2a - aZ)t)/z) 
U =  

respectively. 
(b) Now we seek solutions of type (1.2) when zxx # 0. Since (5.13) gives 

(5.22) 

we may consider a symmetry reduction in the form 

U(% t )  = z ,F(z)  + Bo + BIZ (5.23) 

where B1 is an arbitrary function o f t .  In view of ( U ) ,  we have BO = u1 - z x F l ,  with Fl 
as an arbitrary constant. When U as in (5.23) is substituted into (5.1), we get 

[Zxt - Z x r r  + (a - 2(a + 1)Bo + 3 B i ) ~ d F  +z ;F3  + 3B,2Zxz2F+ Biz;zFZ + 2 z ~ E 1 z F 2  

+ ( ~ ~ O - ( ~ + ~ ) ) ( Z ~ ~ ~ + ~ ~ B ~ + Z Z ~ ~ ~ Z ~ ) + - + ( Z ~ + Z ~ ~ ) B ~  dt +a& 
dBo 

(5.24) 

It is again obvious that if (5.24) is to become an ordinary differential equation for F(z ) ,  BO 
and B1 must be defined as in (5.10), and z must satisfy 

Z t  = 3zx, (5.25) 

and 

~ x r  - 3zxx.r + (U .- (U + 1)’/3)z, = 0 (5.26) 

where a = -1, 4, 2. For these values of a, we obtain solutions (21)-(22) and ( 2 3 H 2 4 )  of 
Nucci and Clarkson. 
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6. Conclusion 

In the present paper we have determined the symmetry reductions of the Burgers’ equation, 
modified Korteweg-de Vries equation, Caudrey-Dodd-Gibbon equation and the Fitzhugh- 
Nagumo equation, using the singular manifold method. We have found that expansion (1.4) 
must be used in three ways. First, if the expansion variable z is in the form (1.3), the 
symmetry reductions of type (1.2) given by the direct method of Clarkson and Kruskal are 
recovered. The application of the series is indeed simpler to obtain the same results. 

Second, the truncation of the series (1.4) at the constant level term yields all the non- 
classical exact symmetry reductions given by the method of Bluman and Cole. These 
solutions require that the similarity variable be the solution of certain PDEs. The requirement 
is derived by the consistency conditions of the series solution. Different forms of the constant 
level term lead to many symmetry reductions which have not been found heretofore. As 
a matter of fact, all the solutions of Burgers’ equation [13,14] and the Fitzhugh-Nagumo 
equation [7] are truncated series solutions. For the former equation, the special values of 
the parameters in the similarity variable can sometimes allow it to be a function of 2: as in 
(i.3). The exact solutions thus obtained always satisfy the consistency criterion of Arrigo 
et al for the equivalence of the methods of Clarkson and Kruskal and Bluman and Cole. 

Third, the infinite series (1.4) can be summed exactly to the form (1.2) even when 
zxx # 0. The solutions may now be ‘N-soliton’ type. This case gives rise to a few of 
‘two-soliton’ type solution of Fitzhugh-Nagumo equations. These solutions can also be 
obtained via the direct method of Clarkson and Kruskal. 
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